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Abstract

We present guidelines for teaching students how to analytically solve problems that

involve inhomogeneous media in electrostatic fields, stationary current fields, and

stationary magnetic fields. At the introductory level, the focus is on recognizing classes

of problems that can be solved in closed form and applying simple rules, based on

comparison with solutions in homogeneous media. At the intermediate level, the

focus is on strict proofs based on vector calculus.
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Introduction

There are many efficient numerical techniques for analysis of complex electromag-
netic (EM) problems. In some curricula they are introduced to students as early as
at the undergraduate level, as in Haldar,1 and most of them are available as com-
mercial software. In addition, modern EM courses are often application driven
and/or based on some form of computer aided education tools, as in Beker
et al.2 However, the numerical methods usually do not provide sufficient insight
into the underlying physics needed for mentally grasping the problem. Further,
they are usually inappropriate for the introduction of new ideas and concepts,
particularly to undergraduate students. Excessive reliance on modern software
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tools and the black-box approach practically create deficiency in understanding
various physical phenomena and input–output relations of systems under consid-
eration, as studied in Collin3 and Siakavellas.4

Present-day students of electrical engineering are facing two major challenges.
The first is to successfully complete five-year BSc/MSc studies and adopt electrical
engineering fundamentals. The second challenge is getting ready to cope with real-
life structures that impose understanding of complex problems (such as analysis
and design of EM systems) and to be prepared for the future technologies, about
which we can only have an educated guess. Hence, we believe that it is necessary for
the students in electrical engineering to acquire solid knowledge of the EM-field
theory as early as at the freshmen level of undergraduate studies. Good fundamen-
tals are essential prerequisites for later education in electrical machines, electronics,
microwaves, antennas and radio-wave propagation, solid-state physics, optics,
nanotechnologies, etc. However, teaching the EM-field theory is not easy, because
the students are exposed to new concepts and the mathematical skills are
demanding.

At the undergraduate level, it is appropriate to consider EM-field problems that
have analytical solutions. To get started with understanding of these problems,
students are traditionally exposed to selected simple examples of EM structures,
which can be solved by hand. In other words, the most natural way, in our opinion,
to qualify and quantify these problems is to solve some classes of problems ana-
lytically, and obtain closed-form solutions, which, in turn, provide insight into
studied phenomena. Examples are the electrostatic field of a charged metallic
sphere in a vacuum and the magnetic field of an infinitely long, straight current
filament.

Our experience is that the students can relatively easily apprehend analysis of
EM structures with homogeneous media. However, difficulties arise with problems
that involve inhomogeneous media, such as the electrostatic field in a coaxial cable
with a layered dielectric. Such problems are important in engineering practice; thus
the students should be able to analyze at least some basic cases.

At the introductory level, where the students are not yet familiar with the vector
calculus, it is practically impossible to derive rigorous analytical solutions for EM-
field problems in inhomogeneous media. However, we have established some
simple rules on how to solve such problems, based on comparisons with problems
with homogeneous media. At the intermediate level, in the courses in EM fields, the
students (who elect appropriate courses) are taught rigorous proofs of these simple
rules.

The goal of this paper is to present teaching guidelines, at both the introductory
and intermediate levels, for the analytical solutions of EM-field problems in
inhomogeneous media. For better understanding of the teaching challenges, in
‘‘Undergraduate curriculum’’ section we outline the undergraduate curriculum at
our school. In ‘‘Electrostatics’’ section, the analysis of electrostatic problems is
presented in detail. This approach is directly translated to the analysis of stationary
current fields. In ‘‘Stationary magnetic field’’ section, the analysis of stationary
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magnetic fields is discussed. Finally, in ‘‘Conclusion’’ section, the success of the
teaching method is assessed.

Undergraduate curriculum

The undergraduate curriculum at the School of Electrical Engineering of the
University of Belgrade is organized with the idea to give solid basic theoretical
knowledge. In each semester of the first academic year, all our students (except
those who elect pure software engineering) have two obligatory courses entitled
Fundamentals of Electrical Engineering 1 and 2, respectively. Each course has 3 h
of lectures and 3 h of recitations per week (7 ECTS each). These courses cover EM
fields and circuits: electrostatic fields, stationary current fields, and direct-current
(DC) circuits in the first semester, and magnetic fields (stationary and quasista-
tionary) and alternating-current (AC) circuits and transients in the second semester
with details in Djordjević5 and Božilović et al.6 The presentation of EM fields
concludes with Maxwell’s equations in the integral form. The goal of these two
courses, in general, is to introduce the basic concepts, equations, and analysis
methods for circuits and EM fields.

There are several teaching challenges at this level. First, students come from
various high schools and their skills in mathematics and physic are highly different.
A particular problem is the level of knowledge in calculus. Second, the number
of students who attend these courses is relatively large (more than 500), so it is
not easy to devote sufficient attention to all of them. Third, in a relatively short
allocated time, the courses must provide solid theoretical background and also
provide the students with skills to independently solve various engineering
problems.

In the second or third academic year, most students take a course in EM fields
(one semester). In this course, an in-depth analysis of EM fields is presented, using
vector calculus, as studied in Djordjević7 and Notaroš.8 Engineering concepts and
ideas are introduced as required for the understanding of radio systems, microwave
and optical communication systems, fast digital circuits, and microelectronics.
Maxwell’s equations in the integral and differential form in the time domain and
in the frequency domain are considered, followed by the analysis of plane waves,
guided waves, transients on transmission lines, antennas, and an introduction to
EM compatibility.

Electrostatics

At the beginning of Fundamentals of Electrical Engineering 1, electrostatic fields
are considered. The basic integral expressions for the electrostatic field vector (E0)
and electrostatic potential (V0) in a vacuum are considered, including Gauss’s law.

Among other issues, Gauss’s law is used to obtain analytical solutions for the
vector E0 in a vacuum in problems with a high degree of symmetry. There are three
special cases for which such closed-form solutions are considered. In each case, due
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to symmetry, it is possible to a priori determine the direction of the vector E0 and
the coordinate on which its intensity depends.

In the first case (spherical geometry), the charge distribution depends only on
the distance from one point. If we place the origin of a spherical coordinate system
at that point, due to symmetry, the vector E0 can have only the radial (r) compo-
nent, which depends on the r-coordinate. Examples are a point charge and a sphere
uniformly charged over its surface.

In the second case (cylindrical geometry), the charge distribution depends only
on the distance from one line. If that line coincides with the z-axis of a cylindrical
coordinate system, the vector E0 can have only the radial (r) component, which
depends on the r-coordinate. An example is a uniformly charged, very long,
straight filament.

Finally, in the third case (planar geometry), the charge distribution depends only
on the distance from one plane. If that plane coincides with the Oyz plane of a
Cartesian coordinate system, the vector E0 can have only the x-component, which
depends on the x-coordinate. An example is a uniformly charged plane.

In all three cases, an analytical solution can be found by choosing an appropri-
ate closed surface and applying Gauss’s law to it.

The students usually easily grasp solutions to these problems.
Thereafter, dielectrics are introduced and the generalized Gauss’s law (Gauss’s

law for vector D) is derived. Solved problems include structures with linear
inhomogeneous dielectrics. Some examples are shown in Figure 1. In all cases,
we have one or more electrodes. In some cases, the dielectric is piecewise-
homogeneous, whereas in other cases, the permittivity continuously varies in space.

This is the point where many students struggle. To help them, we have designed
a set of guidelines to understand (i) which problems can have an analytical solution
and (ii) how to cope with such problems. These guidelines are given without proofs;
the proofs are postponed for the EM course.

Figure 1. Cross-section of a spherical capacitor with inhomogeneous dielectric as in

Djordjević5 and Božilović et al.6 (a) Permittivity varies only along the lines of the vector E0

and the structure of the vector D is the same as in the reference problem. (b) Permittivity

varies only over the equipotential surfaces and the structure of the vector E is the same as in

the reference problem.
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(i) We tell the students to consider the given structure in a vacuum, i.e. to imagine
that the dielectric is removed. The geometry of electrodes in a vacuum
(the reference problem) should conform to one of the three geometries speci-
fied above (spherical, cylindrical, or planar), for which the students already
know how to determine the field distribution. For this reference problem, the
students should visualize the electric-field vector E0 and the corresponding
electric flux density vector D0 ¼ "0E0. With respect to the reference problem,
the dielectric properties can vary only in one of the two special ways:

. The dielectric permittivity varies only along the lines of the vector E0, and it is
constant over any equipotential surface (which is perpendicular to the lines of
the vector E0). In this case, the structure (field) of the vector D is the same as in
the reference problem. An example is the problem illustrated in Figure 1(a).

. The dielectric permittivity varies only over equipotential surfaces, and it is con-
stant along any line of the vector E0. In this case, the structure of the vector E is
the same as in the reference problem. An example is the problem illustrated in
Figure 1(b).

(ii) Based on the above considerations, we know the structure of the vector D, viz.
E, which is of paramount importance for the remaining solution procedure.
Knowing the field structure, the next hint is to use the generalized Gauss’s law
and carry on with subsequent derivations.

As a matter of explanation, we tell the students, without a proof, that the
assumed vectors D and E, in both cases, automatically satisfy the basic integral
equations for the electrostatic fields and the corresponding boundary conditions, so
that the solution must be unique.

As two typical examples for this procedure, we determine the capacitance of
spherical capacitors with inhomogeneous dielectric shown in Figure 1(a) and (b).
The reference problem belongs to the spherical geometry class of problems. By
applying Gauss’s law, we easily determine the vectors E0 ¼

Q
4�"0r2

ir and D0 ¼
Q

4�r2
ir

in a vacuum (between the electrodes).
For the first example shown in Figure 1(a), the dielectric permittivity varies only

along the lines of the vector E0. The structure of the vector D is the same

as in the reference problem, i.e. D ¼ D0 ¼
Q

4�r2
ir. Hence, EðrÞ ¼ Q

4�"1r2
ir, a5 r5 c

and EðrÞ ¼
Q

4�"2r2
ir, c5 r5 b. The capacitor voltage is U ¼

R b
a E � dl ¼ Q

4�

1
"1

c�a
ac þ

1
"2

b�c
cb

� �
and the capacitance is C ¼ Q

U ¼
4�

1
"1

c�a
ac þ

1
"2

b�c
cb

.

For the second example, shown in Figure 1(b), the dielectric permittivity varies
only over the equipotential surfaces. The structure of the vector E is the same as in
the reference problem, i.e. it is radial and its intensity depends only on r. Now,
D ¼ "1E in the first dielectric and D ¼ "2E in the second dielectric. By applying
Gauss’s law, we determine the electric-field vector between the capacitor electrodes
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EðrÞ ¼
Q

2�r2ð"1þ"2Þ
ir. The capacitor voltage is U ¼

R b
a E � dl ¼ Q

2�ð"1þ"2Þ
b�a
ab and the cap-

acitance is C ¼ Q
U ¼

2�ð"1þ"2Þab
b�a .

The proof, given in the EM course, runs as follows. We start from the reference
electrostatic problem (in a vacuum), which consists of N (N � 1) metallic bodies
whose charges are Q0,1, Q0,2, . . . , Q0,N and potentials are V0,1, V0,2, . . . ,V0,N,
respectively. We assume that we know the solution for this problem: the electric-
field vector E0ðrÞ and the electric flux density vector D0ðrÞ ¼ "0E0ðrÞ. In the space
outside the metallic bodies, these vectors satisfy the differential equations for the
electrostatic field, curl E0 ¼ 0 and div D0 ¼ 0, along with the boundary conditions
nn � E0,n ¼ 0 and nn �D0,n ¼ �s0, n n ¼ 1, . . . ,Nð Þ at the surfaces of the metallic
bodies, where nn is the corresponding outward normal, and �s0, n is the surface-
charge density on the nth metallic body.

Further, we consider an electrostatic problem consisting of metallic bodies with
the same shape as in the reference problem, but where the free-space is replaced by
a linear, inhomogeneous dielectric, whose relative permittivity is "rðrÞ. In this prob-
lem, the electric-field vector is EðrÞ and the flux density vector is DðrÞ ¼ "rðrÞ"0EðrÞ.
The main concern is to establish which spatial variation of "rðrÞ yields (a)
DðrÞ ¼ D0ðrÞ and (b) EðrÞ ¼ E0ðrÞ.

In both cases, the vectors EðrÞ and DðrÞmust satisfy the differential equations for
the electrostatic field, curl E ¼ 0 and div D ¼ 0 within the dielectric, as well as the
boundary conditions nn � En ¼ 0 and nn �Dn ¼ �s, n at surfaces of the electrodes.
Due to the uniqueness theorem for electrostatic fields in inhomogeneous media, the
resulting solution must be unique, as studied in Djordjević.7

(a) In the case when DðrÞ ¼ D0ðrÞ, the equation div D ¼ 0 is automatically satis-
fied, because div D0 ¼ 0 in the reference problem. The surface-charge density of the
metallic bodies is the same as in the reference problem, since nn �Dn ¼ nn �D0,n ¼

�s, n ¼ �s0, n. In this case, E ¼ E0

"r
6¼ E0. From curl E ¼ 0, it follows that

curl E0

"r

� �
¼ grad 1

"r

� �� �
� E0 þ

1
"r
curl E0 ¼ grad 1

"r

� �� �
� E0 ¼ 0. This will be satis-

fied everywhere if and only if grad 1
"r

� �� �
jjE0. Hence, the permittivity can vary only

in directions collinear with E0 and D0 (i.e. along the lines of the vectors E0 and D0).
(A homogeneous dielectric, for which "r ¼ const, is a special case.) The surface-
charge density of metallic bodies is the same as in the reference electrostatic ana-
lysis problem (Qn ¼ Q0,n) since DðrÞ ¼ D0ðrÞ, but the potentials are different than in
the reference problem (Vn 6¼ V0,n) since E 6¼ E0.

(b) In the case when EðrÞ ¼ E0ðrÞ, equations curl E ¼ 0 and nn � En ¼ 0 are
automatically satisfied, because curl E0 ¼ 0 and nn � E0,n ¼ 0 in reference problem.
Further, D ¼ "rðrÞD0 6¼ D0. From the differential equation div D ¼ 0, it follows
that divð"rD0Þ ¼ ðgrad "rÞ �D0 þ "rdiv D0 ¼ ðgrad "rÞ �D0 ¼ 0. This will be satisfied
at each point if and only if D0?grad "r. Hence, the permittivity can vary only in
directions perpendicular to D0 and E0. In other words, the permittivity can vary
only over equipotential surfaces. (A homogeneous dielectric, for which "r ¼ const,

136 International Journal of Electrical Engineering Education 52(2)

http://ije.sagepub.com/


is a special case.) The potentials of the metallic bodies are the same as in the
reference problem (Vn ¼ V0,n) since EðrÞ ¼ E0ðrÞ. However, the electrode charges
are different than in the reference problem (Qn 6¼ Q0,n) since D 6¼ D0.

Note that similar reasoning applies to the analysis of problems related to the
distribution of stationary currents in inhomogeneous media.

Stationary magnetic field

We consider here the evaluation of the distribution of magnetic field due to sta-
tionary electric currents. The medium is assumed to be linear, but inhomogeneous.
As for the electrostatic fields in the previous section, the key question is about
possible variations of the relative permittivity of the medium (�r) that enable ana-
lytical solutions.

Following the reasoning from the previous section, we consider first the
magnetic field in a vacuum. There are three special geometries for which the
magnetic flux density B0 can be analytically determined starting only from
Ampere’s law.

In the first (cylindrical) geometry, the distribution of the electric current is rota-
tionally symmetric and has only the component parallel to the axis of symmetry.
If we place a cylindrical coordinate system so that the z-axis coincides with the axis
of symmetry, vector B0 can have only the f-component, which depends on the
r-coordinate. An example is an infinite, straight current filament.

In the second (toroidal) geometry, the electric currents flow around generatrices
of a toroidal surface. If the axis of the toroid coincides with the z-axis of a cylin-
drical coordinate system, vector B0 can have only the f-component, which depends
on the r-coordinate inside the toroid and is zero elsewhere. An example is a winding
on a toroidal transformer.

In the third (planar) geometry, the distribution of the electric current depends
only on the distance from a plane. If this plane coincides with the Oyz plane of a
Cartesian coordinate system, and the electric current–density vector J0 has only the
z-component whose intensity depends on the x-coordinate, i.e. J0 ¼ J0,zðxÞ iz, the
magnetic flux density vector can have only the y-component, which depends on x,
i.e. B0 ¼ B0,yðxÞ iy. An example is an infinite, flat sheet of uniform surface electric
currents.

For each of these three geometries, by applying Ampere’s law on an appropri-
ately chosen contour, we can determine the distribution of the magnetic field.

Thereafter, magnetic materials are introduced and the generalized Ampere’s law
(Ampere’s law for vector H) is derived. Solved problems include structures with
linear inhomogeneous magnetic materials. Some examples are shown in Figure 2.
In some cases, the magnetic material is piecewise-homogeneous, whereas in other
cases, the permeability continuously varies in space.

In order to help students solve these field problems, we give guidelines to under-
stand (i) which problems can have an analytical solution and (ii) how to cope with
such problems. These guidelines are given without a proof, and again the proof is
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postponed for the EM course. Since students have some experience with electro-
statics, usually they now easily adopt these guidelines.

(i) We start from the given geometry of conductors in a vacuum (the reference
problem). This geometry should conform to one of the three geometries spe-
cified above (cylindrical, toroidal, or planar), for which students already know
how to determine the field distribution. With respect to the reference problem,
the magnetic properties can vary only in one of the two special ways:

. The permeability varies only in directions perpendicular to B0 and H0. In this
case, the structure of the vector H is the same as in the reference problem.
An example is shown in Figure 2(a).

. The permeability varies only in directions collinear with B0 and H0. In this case,
the structure of the vector B is the same as in the reference problem. However,
the current distribution must be different than the current distribution in the
reference problem. This can be quite difficult to understand and visualize for first
year undergraduate students, so that we postpone this type of problems to senior
years and EMs course.

(ii) For the given problem with an inhomogeneous magnetic material, we now
know the structure of vector B, viz. H. Knowing the field structure, the next
step is to use the generalized Ampere’s law and carry on with subsequent
derivations.

The assumed vectors B and H automatically satisfy the basic integral equations
for the stationary magnetic field and the corresponding boundary conditions,

Figure 2. Cross-section of a coaxial cable with inhomogeneous magnetic material, as

discussed in Djordjević5 and Božilović et al.6 (a) Permeability varies only in the direction

perpendicular to B0 and H0 and the structure of the vector H is the same as in the reference

problem. (b) Permeability varies in a complex manner: it varies in the direction perpendicular

to B0 and H0 on the boundary between the conductor and the magnetic material, and in the

direction collinear with B0 and H0 at the boundary between two magnetic materials. There is

no analytical solution for this type of inhomogeneity.
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so that the solution must be unique, as studied in Djordjević.7 If the problem does
not belong to one of the two cases, the analytical solution cannot be determined by
applying only Ampere’s law. An example of a problem with no analytical solution
is shown in Figure 2(b), where the current I is uniformly distributed over the
conductor cross-sections.

As examples, we consider coaxial cables with inhomogeneous magnetic materials
shown in Figure 2. The reference problem belongs to the cylindrical geometry, so
that vector H0 has only the �-component. By applying Ampere’s law, we can easily

determine magnetic field distribution inside coaxial cable: H0ðrÞ ¼
Ir

2�a2
, r5 a,

H0ðrÞ ¼
I

2�r , a � r � c, H0ðrÞ ¼
Iðd2�r2Þ

2�rðd2�c2Þ
, c5 r5 d, and H0ðrÞ ¼ 0, r � d. Since

we consider the conductor to be non-magnetic, we have B0ðrÞ ¼ �0H0ðrÞ everywhere.

For the first example, shown in Figure 2(a), the permeability varies only in the
direction perpendicular to B0 and H0. The structure of vector H is the same as in
the reference problem. The vector B is obtained from the constitutive relation; it

has only the �-component, BðrÞ ¼ �0Ir
2�a2

, r5 a, BðrÞ ¼ �1I
2�r , a5 r5 b, BðrÞ ¼ �2I

2�r ,

b5 r5 c, BðrÞ ¼ �0Iðd
2�r2Þ

2�rðd2�c2Þ
, c5 r5 d, and BðrÞ ¼ 0, r � d.

For the second example, shown in Figure 2(b), the permeability varies in a com-
plex manner. It varies in the direction perpendicular to B0 andH0 on the boundaries
between each conductor and the magnetic materials, as well as in the direction
collinear with B0 and H0 at the boundary between two magnetic materials. Since
this problem does not belong to either of the two above-mentioned inhomogeneous
types, analytical solution cannot be determined by the proposed procedure.

Next, we briefly present the mathematical proof for these guidelines.
Knowing the solution for a problem in a vacuum, we are interested in finding the

corresponding problem with a linear, inhomogeneous, magnetic material, which
has a closed-form solution for the distribution of the magnetic field.

We start from the reference problem in which the electric currents J0ðrÞ are
situated in a vacuum, and vectors B0ðrÞ and H0ðrÞ are known. This magnetic
field must satisfy the differential equations curl H0 ¼ J0 and div B0 ¼ 0, as well
as the constitutive relation B0 ¼ �0H0, where �0 is the free-space permeability.

We now consider the corresponding magnetic problem in which the free-space
has been replaced by a linear and inhomogeneous magnetic material whose relative
permeability is �rðrÞ. The magnetic field is determined by HðrÞ and BðrÞ ¼

�rðrÞ�0HðrÞ. We want to know which spatial variations of �rðrÞ yield (a)
HðrÞ ¼ H0ðrÞ and (b) BðrÞ ¼ B0ðrÞ.

In both cases, HðrÞ and BðrÞ must satisfy the equations curl H ¼ J and
div B ¼ 0, where JðrÞ is the density of the electric currents.

(a) In the case when HðrÞ ¼ H0ðrÞ, the equation curl H ¼ curl H0 ¼ J ¼ J0 will be
satisfied if J ¼ J0. Also, B ¼ �rðrÞB0 6¼ B0. From div B ¼ 0 it follows that
divð�rB0Þ ¼ ðgrad �rÞ � B0 þ �rdiv B0 ¼ ðgrad �rÞ � B0 ¼ 0. This will be satis-
fied everywhere if and only if B0?grad �r. Hence, the permeability can vary
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only in directions perpendicular to B0 and H0. Note that the reference problem
and the considered problem should have the same current distribution.
(A homogeneous material, for which �r ¼ const, is a special case.)

(b) In the case when BðrÞ ¼ B0ðrÞ, the equation div B ¼ 0 is automatically satisfied,

since div B0 ¼ 0 in the reference problem, but H ¼ H0

�r
6¼ H0. From curl H ¼ J,

it follows that curl H0

�r

� �
¼ grad 1

�r

� �� �
�H0 þ

1
�r
curl H0 ¼ grad 1

�r

� �� �
�H0

þ J0
�r
¼ J. This will be satisfied at each point if and only if grad 1

�r

� �� �
�

H0 þ
J0
�r
¼ J. There is no simple mathematical description of the general case

in which this condition is fulfilled. For the sake of simplification, let us consider

the special case in which grad 1
�r

� �� �
�H0 ¼ 0, when the permeability varies only

in the direction collinear with H0 and B0. The magnetic field exists in the entire
space (including the space occupied by the electric currents). If the magnetic mater-

ial is inhomogeneous, it follows that JðrÞ ¼
J0ðrÞ

�r
must be satisfied, so that the

current distribution is different compared to the distribution in the reference prob-
lem, although the current distribution occupies the same space in both cases.

Conclusion

We have outlined the guidelines for teaching hard-to-grasp concepts of analytically
solving EM problems that involve inhomogeneous media in electrostatic fields,
stationary current fields, and stationary magnetic fields. These problems are the
essence of the Fundamentals of Electrical Engineering 1 and 2 coursework, which
most of the first-year students in Electrical Engineering have to take. At the intro-
ductory level, the coursework focuses on simply recognizing classes of problems
that can be solved in closed form. Once recognized, the problems can be solved by
applying simple rules, based on comparison with solutions in homogeneous media.
In addition, we have presented strict mathematical proofs, based on vector calcu-
lus, regarding the types of problems that can be analytically solved. These proofs
can be presented in an intermediate level course (e.g. in the third year EM course).
Although the presented physical concepts and rigorous mathematical proofs are
extremely important for unambiguous comprehension of the fundamentals of
EM-field analysis (and as such they are adopted as parts of our regular under-
graduate introductory and intermediate level courses in Electrical Engineering), to
the best of our knowledge, they have not been addressed previously in such a
unified and clear manner in any EM textbooks or educational papers.
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