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Abstract—Some aspects of presenting nodal equations to 

freshmen are outlined. For advanced students, variations of the 

classical equations are derived, which may be more practical and 

efficient for hand calculations than the modified nodal analysis. 

Index Terms—Circuit analysis, Nodal equations 

 

I. INTRODUCTION 

UNDAMENTALS of Electrical Engineering (FEE) 1 and 

2 are two first-year courses (at the bachelor level) at the 

School of Electrical Engineering, University of Belgrade. Each 

course has 3 hours of lectures and 3 hours of recitations per 

week, during 15 weeks of a semester (autumn and spring, 

respectively). For advanced students, supplementary elective 

courses are offered, with 1 hour of lectures and 1 hour of 

recitations per week. During the spring semester, there is also 

a compulsory lab course. The basic course in FEE 1 covers 

electrostatic fields, steady-current fields, and d.c. circuits. The 

basic course in FEE 2 covers electromagnetism, a.c. circuits, 

and transients in simple circuits. The courses serve as a solid 

introduction to the engineering electromagnetic-field theory 

and the basic circuit theory. The courses are fully covered by 

adequate literature [1], [2]. 

The particular purpose of this paper is to show our approach 

in the FEE courses to the formulation of the nodal equations 

and present a simple formulation for networks that contain 

several branches with only ideal voltage generators in them. In 

Section II, we present some syllabi of the FEE courses. In 

Section III, we outline the presentation of the nodal equations. 

Finally, in Section IV, we describe the modification of the 

classical nodal equations. 

II. FEE SYLLABI FOR D.C. CIRCUITS 

We concentrate our attention on the part of FEE 1 which 

covers d.c. circuits. The syllabi start from the field theory. The 

current density is introduced first, followed by integral 

equation for the electric field (which is the basis for KVL) and 

the continuity equation (the basis for KCL). The constitutive 

relation is introduced intuitively. The concept of electrical 
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circuits is derived from the general concept of stationary 

current fields. Basic d.c. circuit elements are introduced 

(generators and resistors), along with ideal wires that 

interconnect them. Voltage-current relations for generators and 

resistors are deduced, along with power-balance relations. 

KCL and KVL are derived from the field equations. Ideal 

voltage and current generators are introduced. 

The subsequent syllabi are a solid introduction to the basic 

circuit theory. They start with tableau equations, from which 

the reduced form of KVL is deduced. Loop and nodal 

equations follow. A set of theorems is also presented (linearity, 

superposition, Thévenen, Norton, reciprocity, maximal power 

transfer, and bisection). Analysis of circuits with nonlinear 

resistive elements is covered as well. The course ends with the 

treatment of networks with capacitors. Advanced students can 

get acquainted with controlled sources and two-port networks 

(resistive, with controlled and independent sources). They can 

also study nonlinear circuits in more depth. 

In FEE, we deduce the circuit concept from the 

electromagnetic-field theory. Hence, we identify a circuit node 

with an electromagnetic junction, i.e., the node is a point 

where the current path is divided. Similarly, a branch is a part 

of the circuit between two nodes, so that it can contain several 

elements connected in series. Such a choice is convenient for 

hand calculations, although it is not compatible with the 

definition of a branch used in the circuit theory. 

We visualize a loop as a closed line along circuit branches, 

and a cut set is defined by considering a closed surface 

(Gaussian surface) that intersects certain branches. In the FEE 

courses, we predominantly use nodal cuts. 

We have preserved clear distinctions between the potential 

(V), the voltage (“tension”, the difference of potentials, U), 

and the electromotive force of a voltage generator (emf, E), as 

in the classical masterpiece [3]. Unfortunately, in some 

modern textbooks [4], these three quantities are used without 

clear distinction. 

III. CLASSICAL NODAL EQUATIONS 

The first step in the FEE tuition is to figure out the 

independent “voltage-type” variables [1]. We consider circuits 

with connected graphs, so that the number of these variables 

equals the number of nodes less one ( 1nf −= nn ). Adopting 

one node to be the reference (grounded) node, we identify the 

potentials of the remaining (non-grounded, hot) nodes to form 

a set of independent variables. 
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Consider a resistive circuit that consists of resistors and 

independent sources, but without zero-resistance branches 

(i.e., no branch is an ideal voltage source). We write KCL for 

the hot nodes, express the branch currents in terms of the node 

potentials, and rearrange the resulting equations to yield the 

basic form of the nodal equations: 
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where  

• ,,...,1, fniGii =  is the sum of conductances of all 

branches that are connected to node i,  

• jinjiGij ≠= ,,...,1,, f , is the sum of conductances of 

all branches that directly interconnect nodes i and j, 

multiplied by −1, and 

• ,,...,1, fn niI i =  is the algebraic sum of currents of all 

current and equivalent current generators of branches 

connected to node i: 

o an equivalent current generator is obtained 

by transformation of a real voltage generator 

into a real current generator; 

o when the reference direction of a current is 

towards the node, the current is taken as is, 

while it is multiplied by −1 otherwise. 

In FEE, the students are trained to write the nodal equations 

for a given circuit directly, by inspecting the circuit and using 

the above template. 

Next, we consider the case when in one branch there is only 

an ideal voltage generator. The nodal equations (1) cannot be 

formulated because there exists a zero-resistance (infinite-

admittance) branch. We bypass the problem by taking one 

node to which this generator is connected to be the reference 

node. Now, the potential of the other node is known as it is 

determined by the generator emf. We generalize this approach 

to the case when there are several branches that contain only 

ideal voltage generators, but all these generators are connected 

to one (grounded) node. 

For advanced students, we go on. We introduce the 

modified nodal analysis (MNA). We stress the usefulness of 

the method in modern circuit simulation tools (e.g., the Spice 

family) [5]. However, we also point out the potential 

deficiencies [6], [7]: for each ideal voltage generator, we must 

artificially add one unknown and thus increase the order of the 

system of linear equations that is to be solved. This 

augmenting is inconvenient for hand calculations, and may not 

be the optimal choice for computer-aided solutions as well. 

IV. NEW FORMULATION OF NODAL EQUATIONS 

For circuits that contain several branches with only ideal 

voltage generators, a more intuitive approach than MNA, at 

least for the freshmen, may be to do simple and 

straightforward manipulations with the nodal equations and 

thus solve the circuit, as demonstrated in this section. This 

approach yields the same equations as the ultimate set obtained 

when applying the supernode concept [8], [9]. However, 

instead of deriving the equations from scratch each time a 

circuit is solved, we define a template for directly writing 

down the appropriate set of equations. 

We consider two examples, shown in Fig. 1. Node 0 is 

assumed to be the reference. For both circuits, we let 

0, 21 →RR , so that we end up with ideal voltage generators in 

two branches (with element indices 1 and 2). In the first 

example, these two generators are interconnected in a chain. In 

the second example, the two generators are not connected to 

common nodes. 

 
 (a) (b) 

Figure 1. Examples of circuits that contain branches with only ideal voltage 

generators when 0, 21 →RR  [2]. 

A. Chained Generators 

Nodal equations for the first example (Fig. 1a), when 

0, 21 >RR , read 
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We multiply equation (3) by 2R  and then take 02 →R . 

The result is  

221 EVV =+− . (5) 

From (2) alone, we cannot conclude what happens when 

0, 21 →RR . However, if we eliminate the potential 2V  from 

(2) by using (5), the terms containing 
2

1

R
 cancel out. After 

multiplication by 1R , in the limit when 01 →R , we obtain 

11 EV = . (6) 

Equations (4)-(6) form a system of linear equations. 

Obviously, 21 EV =  and 212 EEV += , so that 3V  can now be 

evaluated from (4). 

This procedure can be generalized to an arbitrary case when 

ideal voltage generators are chained. We take the beginning of 

the chain to be the reference point. We do not write classical 

nodal equations for the nodes at which the ideal voltage 

generators are connected. However, the potentials of these 



 

nodes are obtained by algebraically summing the 

corresponding emfs. For the remaining hot nodes, we write 

classical nodal equations, in which some potentials are already 

known. Hence, we can obtain the remaining potentials. 

B. Arbitrary Case 

For the circuit shown in Fig. 1b, assuming 0, 21 >RR , the 

nodal equations read 
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When 01 →R , from (9) we obtain 

13 EV = . (10) 

When 02 →R , (7) yields 

221 EVV −=− . (11) 

However, the same result also follows from (8). Hence, we do 

not obtain a sufficient number of independent equations 

( 31n =−n ) to solve the problem. The remedy is to add (7) 

and (8), which yields 
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The system of equations consists now of (10), (11), and 

(12), which is simple to be solved. 

We generalize here this procedure, as follows. We consider 

a circuit, like the example in Fig. 2, where some branches 

contain only ideal voltage generators. We refer to these 

branches as zero-resistance branches (ZRBs). Such branches 

may be clustered. For the circuit in Fig. 2, there are two 

clusters. 

 
Figure 2. Example of a circuit with two ZRB clusters. 

 

The ZRBs in a cluster must not form closed loops. If they 

do, such zero-resistance loops would make the solution 

impossible (if the algebraic sum of emfs along a loop is not 

zero) or undetermined (if the algebraic sum is zero). Hence, 

the ZRBs in a cluster can only be arranged in the form of a 

sub-tree. Note that standard circuit simulators do perform 

topological tests while searching for zero-resistance loops. 

Such tests already have sufficient information to find the 

corresponding ZRB sub-trees at practically no additional 

computational cost. 

Note that the total number of nodes belonging to a ZRB 

cluster with z generators ( 1≥z ) equals 1+z . 

Skipping the derivation, which is based on the same 

guidelines as for the circuit shown in Fig. 1b, we immediately 

give rules for writing down the system of nodal equations. 

For each hot node that does not belong to a ZRB cluster, we 

write an equation in the classical form (1). For the circuit in 

Fig. 2, there is only one such node (node 2). 

Instead of the classical equations for the first z nodes of a 

cluster, we write an equation of the form  

jiji EVV =− ,  (13) 

where jiE  is the emf of the ideal voltage generator in the 

branch that connects nodes i and j. If one of these two nodes is 

grounded, its potential does not appear in (13). We write 

equations of the form (13) for all ZRBs in the cluster. 

For a cluster that does not encompass the grounded node, 

instead of the classical equation for the last node of the cluster 

(whose index is ci ), we write an equation of the form  

cffccc n2211 ... inniii IVGVGVG =+++ , (14) 

where 
cniI  is the algebraic sum of currents of all current 

generators and equivalent current generators of branches 

connected to the cluster, excluding the ZRBs and other 

branches that interconnect two nodes of the cluster. If node j 

belongs to the cluster, jiG
c

 is the sum of conductances of all 

branches that are connected to that node, excluding the ZRBs 

and other branches that directly interconnect to other nodes of 

the cluster. If node j does not belong to the cluster, jiG
c

 is the 

sum of conductances of all branches that are connected 

between that node and the cluster, multiplied by −1. 

For a cluster whose one node is grounded, there is no 

equation of the form (14). 

Following these rules, the system of nodal equations for the 

circuit shown in Fig. 2 is obtained as follows. The first cluster 

encompasses nodes 1, 4, 0, and 7. The second cluster 

encompasses nodes 3, 5, 6, and 8. For node 2, we have a 

classical equation. Equations at locations reserved for nodes 1, 

4, and 7, as well as for 3, 5, and 6, have the form (13). 

Equation for node 8 has the form (14). Hence, we have the 

following system of simultaneous linear equations: 
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g15
3

3
1

2
31

1111
IV

R
V

R
V

RR
=−−










+ , (15.2) 

263 EVV =− , (15.3) 

44 EV = , (15.4) 

365 EVV =− , (15.5) 

686 EVV −=− , (15.6) 

77 EV −= , (15.7) 
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As an explanation for (15.8), node 1 is connected to node 5 

of cluster 2 by the resistor 2R . A similar situation is for nodes 

4 and 7. Node 2 is connected to nodes 3 and 5 of the cluster by 

1R  and 3R . Node 3 is in cluster 2 and it is connected only to 

node 2 outside the cluster. A similar situation is for node 8. 

Node 5 is connected to nodes 1, 2, 4, 7, and 0 outside cluster 

2. The resistor 4R  and the branch 78 - RE  interconnect nodes 

that belong to cluster 2. Hence, 4R , 7R , and 8E , do not 

appear in the above equations. By inspecting the scheme in 

Fig. 2, we can see that these elements, indeed, cannot affect 

the node potentials, although they do affect the currents of 2E , 

3E , and 6E . 

Note that we have ended up with a total of 81nf =−= nn  

equations. 

For comparison, to write the classical MNA equations for 

the circuit of Fig. 2, we have to introduce currents of the six 

ideal voltage generators, as shown in Fig. 3. We end up with a 

grand total of 14 simultaneous linear equations: 
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141 EVV =− , (16.9) 

263 EVV =− , (16.10) 

365 EVV =− , (16.11) 

44 EV = , (16.12) 

668 EVV =− , (16.13) 

77 EV −= . (16.14) 

By comparing systems (15) and (16), we can see that the 

proposed method leads to a substantially smaller and simpler 

system of linear equations than the classical MNA, which is 

the essential advantage for hand calculations. The only benefit 

of MNA is that the currents of the ideal voltage generators are 

readily available, which is paid by a price of a larger system. 

In MNA, the currents of all other branches are obtained by a 

posteriori calculations. 

Similarly, in the proposed method, all branch currents are 

obtained by a posteriori calculations. In particular, the 

currents of the ideal voltage generators are evaluated using 

KCL. 
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Figure 3. Notation for classical MNA equations. 

V. CONCLUSION 

We have presented the basic steps in teaching the nodal 

equations for the freshmen, within the Fundamentals of 

Electrical Engineering. 

In addition, we have developed an alternative to the 

classical MNA approach for circuits that contain zero-

resistance branches. The proposed method is more intuitive 

and convenient for hand calculations because it is based on a 

smaller and simpler system of linear equations than MNA. The 

technique is introduced for d.c. circuits. However, it is directly 

applicable to a.c. circuits and transient analysis. 
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